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Abstract  
One essential part of automated diagnosis systems for 
SI engines is due to elements of air path system. The 
diagnosis task is getting more challenging by including 
Exhaust Gas Recirculation (EGR) which its transient 
effects on temperament complexity of the air-path 
system are quite significant. The faults occur in this 
subsystem can result in deviation in air-fuel ratio, 
which causes increased emissions, misfire and 
especially loss of power and drivability problems. In 
this article, a model-based diagnosis system for air-
path of an SI engine with EGR is constructed. In 
addition, a nonlinear four-state dynamic model of an SI 
engine with EGR is utilized, and then results are 
validated by a real engine. In the next step, diagnosis 
system is designed in the framework of Artificial 
Neural Network (ANN) classifier. Simulation results 
show that the constructed diagnosis system for six fault 
modes considering all three kinds of common faults 
including actuator, component, and sensor faults is 
applied successfully. In addition, in this article the 
Manifold Air Temperature (MAT) sensor fault which 
comparatively less has been evaluated than other 
elements are also taken into account. 
Keywords: fault diagnosis, mean value modeling, 
neural network classifier and SI engine. 
 
Introduction 
Due to the flexibility and complexity of SI engines the 
number of potential failure increases and this makes 
the task of fault diagnosis quite challenging. When 
faults appear frequently in industrial machinery, the 
component quality and flexibility of the system will be 
decreased and consequently the price of manufacturing 
will be diversely affected.  
First serious researches about fault diagnosis of 
dynamic systems are done in 1970s. Reference [1] in 
1971 initiated fault diagnosis based on observers in 
linear systems. Reference [2] introduced Sensor fault 
diagnosis for the first time in 1978. Reference [3] in 
1991 used Space Relations in diagnosis systems. 
Reference [4] in 1997, [5] in 1999 and [6] in 2006 
accomplished more researches on automotive air path 
fault diagnosis. 
Developing artificial intelligence methods, researches 
in FDI approaches has been introduced to other levels. 

Reference [7] in 1986 suggested application of Neural 
Networks in design of fault diagnostic systems for the 
first time. In 1997, [8] used Fuzzy logic and Neural 
Network for estimation of physical parameters of 
system. More works on applications of Neural 
Networks in fault diagnosis could be mentioned as [9] 
in 2004 and [10] in 2006. 
In this article, different fault types simulated in inlet 
system of a modified 1275 cc British Leyland engine 
has been diagnosed by a Neural Network based 
diagnostic system. The mathematical model is 
presented in section 2. In section 3, the characteristics 
and implementation procedure of faults into the model 
are demonstrated. The construction of a diagnostic 
system based on ANN is introduced in section 4, and in 
the end, the performance quality of proposed diagnosis 
system is analyzed. 
 
Mathematical Model 
Modeling 
Here, the mathematical model which is used to study 
the diagnosis scheme is presented. This model is a 
nonlinear four state dynamic model of an SI engine 
with EGR. The model is simulated in SIMULINK 
toolbox of MATLAB and results are validated with a 
real engine. Here only the final differential state 
equations will be shown. Detailed information about 
this model can be found in [11]. 
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Model Validation 
The adiabatic MVEM presented above was compared 
by experimental results of a 1275 cc British Leyland 
engine. Differences between engine simulation and 
measurements can be seen in “Figure 1” to “Figure 4”. 
Note that notations and descriptions about the 
parameters and constants used in here are presented in 
list of symbols at the end of paper. 
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As it could be seen in “Figure 2”, “Figure 3” and 
“Figure 4”, the maximum error is around 5, 8, and 10 
percents respectively. It has to be mentioned that the 
major outcome of the model is its capability in 
modeling the dynamics of the manifold air temperature 
which is a crucial factor in diagnosing the MAT sensor 
faults. 
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Figure 1: Throttle angle Behaviour through time 
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Figure 2: Engine revolution behaviour through time 

with 10% EGR. 
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Figure 3: Manifold air pressure behaviour through time 

with 10% EGR 
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Figure 4: Manifold air temperature behaviour through 

time with 10% EGR 

Modeling of Faults 
For the sake of generality, all three types of faults are 
diagnosed in this paper [5]. 
No Fault (NF) 
In this operational mode, the sensors and actuators are 
fault free and there is no leakage in the intake system. 
Intake manifold Leakage (IL) 
For the engine that is used in this work, the intake 
manifold sub-model pressure during normal operation 
is always lower than ambient pressure. Hence, a leak in 
this part is always results in an air flow into the air 
tube. As a result, faults in this part can not have 
negative values. The model for IL is obtained by taking 
the model for NF operational mode, but replacing it 
with (5). The constraint on the percentage 
parameter ILg , limited by the performance ranges of 
modeled SI engine, is [0 ,15]ILg ∈ .  

(5) 
NFatILNFatILat mgmm ,,, &&& +=

  
Fuel Injector Actuator Gain-Fault (FAG) 
In FAG operational mode, the fault is generated in the 
fuel injector actuator by adding a scalar percentage 
parameter FAGg . The restriction on FAGg  is. 

[ 8 ,15]FAGg ∈ − . 
 

 (6) 
, , ,f FAG f NF FAG f NFm m g m= +& & &

 
Manifold Pressure Sensor Gain-Fault (MPSG) 
The model corresponding to this operational mode is 
related to a gain-fault added to the physical value of the 
manifold pressure sensor. For implementing the MPSG 
fault, a gain factor MPSGg  is added to (7). The 
constraint on MPSGg  is. [ 15 ,15]MPSGg ∈ − . 

 (7) 
, , ,i MPSG i NF MPSG i NFP P g P= +

 
Throttle Actuator Gain-Fault (THAG) 
This operational mode is representing a fault in throttle 
plate actuator. The model of THAG fault has an added 
parameter THAGg . This parameter range, like other 
parameters, is limited by the operation ranges of the SI 
engine model, [ 10 ,10]THAGg ∈ − . 

 (8) 
NFTHAGNFTHAG g ααα +=  

Manifold Temperature Sensor Gain-Fault (MTSG) 
The MTSG operational mode is modeled as an added 
gain-fault parameter MTSGg  to outcome of MAT 
sensor. Here, MTSGg  is set to [ 5 , 15]MTSGg ∈ −  
percentage of the manifold temperature values in “no 
fault” working mode.  

(9) 
NFiMTSGNFiMTSGi TgTT ,,, +=

 
“Figures 5” and “Figure 6” show effects of above 
mentioned simulated faults on SI engine model as 
illustration. The related magnitudes of applied faults, 
shown in Figures, are listed in “Table 1”.  
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Figure 5: Revolution results of positive fault modeling  
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Figure 6: Revolution results of negative fault modeling  
 

Table 1: Faults used as train data 

Networks IL FAG MPSG THAG MTSG 

Positive 10% 10% 7% 6% 7% 

Negative ---- -4% -7% -6% -4% 
 

Strategy and Simulation 
In this case of study, two distinctive networks are 
designed and then trained to detect and also isolate pre-
defined faults. The first network diagnosis positive 
ranges of faults and the other one is dedicated to 
negative counterparts. In this case of study, network 
inputs are arranged as, engine speed, intake manifold 
temperature, intake manifold pressure, injected fuel rate, and 
throttle position. To reduce sensibility to noise and 
unordered disturbances, it is beneficial to normalize 
process variables obtained from working conditions of 
SI engine model in response to above mentioned faults 
(see “Table 1”). It has to be noted that output signals 

( )y t  and related estimated signals ( )y t  are extracted 
in each time step of engine performance (0.1 sec). 

(11) 
( )
( )

y tNormalized Process Variables
y t

=  

As it could be seen in “Table 2” and “Table 3”, for 
sorting outputs of each fault mode, a vector with the 
arrangement of one or zero is selected.  
Deviation of real data from ones implemented by the 
ANN is reported as network errors. These errors are 
calculated based on mean square error (MSE) formula 
given below: 

 
(12) ( ), ,
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Where “i” is number of nodes in output layer, “p” is 
the number of samples and predictedY  is network outputs 

and realY  is certified data of SI engine state variables, 
which extracted before from SI model test procedures. 

Table 2: Classification vectors for 
positive fault classes 
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Table 3: Classification vectors for 

negative fault classes 
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Networks are then applied to MATLAB and trained by 
Quick-propagation (“trainrp” function in MATLAB). 
Networks are trained surprisingly well with MSE value 
of 0.0092 for positive network and 0.0081 for negative 
one. For the purpose of testing the ability of networks 
for diagnosing the exact trained faults, these faults are 
fed as inputs to networks. Normalized revolution inputs 
for both positive and negative network are shown in 
“Figure 7” and “Figure 8” as examples.  
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Figure 7: Positive normalized revolution results fed as 
training input data 
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Figure 8: Negative normalized revolution results fed as 
training input data 

 
It is clear in “Figure 9” and “Figure 10”that networks 
do exceedingly fine while related fault modes’ 
elements in output vectors are one in almost every 501 
samples and remaining fault modes’ elements are zero. 
Some deviations from one and zero are observed, but 
diagnostic performance of the system is not affected. 

To test the generalization and prediction capabilities of 
networks, different percentages of MPSG fault mode is 
chosen as input. It has to be noted that MSE values in 
different fault mode percentages go up when faults 
deviate from trained data. In this way, if a network 
enables to isolate a fault mode extreme boundary 
ranges succesfully, it can isolate entire possible fault 

mode percentages. Hence, two extreme positive and 
negative extends of MPSG fault mode were executed 
on SI engine model and results are fed into networks. 
In “Figure 11” normalized revolution behavior of 
MPSG extreme boundaries fed as inputs are shown. 

In order to increase immunity of diagnosis system to small 
faults and consequently false alarms, the ranges of each 
fault parameters described in section 3 are extended to 
(-3,3) for their NF mode in stead of a single value of 
{0}. In this way, a scalar gain-fault parameter 
considers as a fault the fault is greater than 3%. 

50 100 150 200 250 300 350 400 450 500
0

0.5
1

N
F

50 100 150 200 250 300 350 400 450 500
0

0.5
1

IL

50 100 150 200 250 300 350 400 450 500
0

0.5
1

FA
G

50 100 150 200 250 300 350 400 450 500
0

0.5
1

M
P

S
G

50 100 150 200 250 300 350 400 450 500
0

0.5
1

TH
A

G

50 100 150 200 250 300 350 400 450 500
0

0.5
1

M
TS

G

 
Figure 12: Outputs of the positive neural network to 
upper positive MPSG ranges 
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Figure 13: Outputs of the positive neural network to 

lower positive MPSG ranges 
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Figure 9: Outputs of positive trained network to its 

trained faults  
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Figure 10: Outputs of  negative trained network to its 

trained faults  
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Figure 11: Normalized revolution of MPSG fault 

mode’s boundaries 



16th. Annual (International) Conference on Mechanical Engineering-ISME2008 
May 14-16, 2008, Shahid Bahonar University of Kerman, Iran 

 
The positive network does well in diagnosis MPSG 
faults’ utmost boundaries. According to “Figure 12” 
and “Figure 13”, it is obvious that IL, THAG, MTSG 
fault modes are not sensible to positive extensions of 
this fault mode while they are almost zero in all of their 
outputs samples. This temperament could be also 
concluded from “Figure 9” while the positive network 
has no output other than zero in response to MPSG 
trained fault in three above mentioned fault modes. In 
contrast, some deviations from zero are seen in related 
501 samples of NF and FAG fault modes of which 
illustrate their sensibility to MPSG. Moreover, in the 
first and third row of “Figure 9”, there are some 
oscillations in the fourth part of the samples from 1503 
to 2004. These dispositions of samples represent NF 
and FAG fault modes’ dependency to MPSG. These 
behaviours is somehow degraded the isolation 
performance of positive network in response to MPSG, 
NF and FAG fault modes. As it could be seen in 
“Figure 12”, performance of positive network in 

15%MPSGg =  case is devalued by this dependency of 
MPSG and NF fault modes. As a result, some samples 
are not zero in NF row which is not desirable in 
isolation MPSG fault mode. It is also understood that 
FAG fault mode is not sensible to upper positive ranges 
of MPSG. In 3%MPSGg =  case, the network 
performance reveals dependency between MPSG, NF 
and FAG fault modes. As it is clear in “Figure 13”, 
there are some NF and FAG samples which are not 
zero in response to MPSG lower positive ranges. It is 
also mentionable that NF fault mode is less sensible 
than FAG to this boundary of MPSG. 
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Figure 14: Outputs of the negative neural network to 

upper negative MPSG ranges  
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Figure 15: Outputs of the negative neural network to 

lower positive MPSG ranges  

“Figure 14” and “Figure 15” show negative network 
responses to negative exterme ranges of MPSG. As it is 
understood from these figures, NF, FAG, THAG and 
MTSG are completely decoupled from MPSG while 
their samples are zero in response to MPSG utmost. 
Although NF and THAG fault mode is rather reacted to 
MPSG in upper negative ranges, they can be 
disregarded.  
In spite of the fact that sensibility of NF, FAG fault 
modes to MPSG is worsen the ability of positive 
network to isolate entire extensions of MPSG fault 
mode, networks still completely able to fulfill the 
diagnostic task. In order to certify this fact “Table 4” is 
provided. In this table, responses of positive and 
negative networks to all ranges of each fault mode are 
presented. Networks outcomes are evaluated by 
integrating the values of each fault mode’s samples 
generated by network, see (13) and (14). 
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Where “P” and “N” indicate the positive and negative 
networks’ performances, “i” and “j” represent applied 
fault modes and their percentages respectively. “O” 
stands for output samples resulted from network for 
each applied fault modes -which are between 0 and 1- 
and “F” represents all fault modes that network is 
capable of diagnose. Finally, “n” is the amount of 
samples used for representing each fault mode in 
networks’ outputs. Performance indicators “P” and “N” 
are scalar vectors with six and five members 
respectively.  
 

Table 4: Responses of networks to all ranges of each 
fault mode. 
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M
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N
F ---- 468 0 13 1 0 0 

3% 89 236 10 75 0 3 

IL
 

15% 4 276 1 0 172 2 
-8% 109 ---- 318 0 151 14 
-3% 133 ---- 256 0 3 1 
3% 258 0 311 2 1 0 

FA
G

 

15% 171 0 254 177 0 0 
-15% 0 ---- 0 500 3 0 
-3% 12 ---- 3 408 27 0 
3% 83 0 131 385 1 0 

M
PS

G
 

15% 137 45 16 282 1 5 
-10% 6 ---- 12 216 392 0 
-3% 182 ---- 71 0 272 66 
3% 4 240 1 0 279 2 

TH
A

G
 

10% 16 2 1 0 453 24 
-5% 8 ---- 4 1 1 489 
-3% 100 ---- 19 0 10 383 
3% 0 14 45 1 0 419 

M
TS

G
 

15% 3 0 60 6 4 485 



16th. Annual (International) Conference on Mechanical Engineering-ISME2008 
May 14-16, 2008, Shahid Bahonar University of Kerman, Iran 

 
As it could be seen in “Table 4”, apart from 
dependencies among fault modes, the performance 
values of incident fault mode in both networks are 
higher than others in all cases. This issue is led to a 
safe isolation of right fault mode in this diagnosis 
system while the higher performance factor can 
correctly isolate the implemented fault mode. 
In robustness discussion, presented method is fed by 
normalized process variables which have an important 
role in minimizing effects of noises, disturbances and 
also unordered uncertainties to high degrees. In 
addition, extending NF operating mode by ignoring 
small gain-fault parameters was immune the diagnosis 
system to false alarms. Moreover, as it is discussed 
above, this method has the ability of diagnosis the 
whole ranges of faults related to operating conditions 
of engine. This characteristic empowers this diagnosis 
system to show robust performance in any working 
conditions. This method works such an extent that we 
assert applying this method for real-world engines’ 
fault diagnostic applications. 
 
Conclusions 
In this paper, a diagnosis method based on normalized 
process variable and neural network classifier was 
developed on intake manifold of an SI engine with 
EGR. The main goal of this work was to present and 
apply a diagnostic method which is fast and accurate, 
and also has low computational cost. For this reason, 
the diagnosis system was designed by neural network 
which was shown to be a promising way of diagnosing 
faults occurred in the intake manifold of the SI engine. 
This method was capable of diagnosing not only the 
predefined trained faults, but also entire ranges of these 
faults. Finally, in spite of the method simplicity, it was 
completely capable of diagnosing both positive and 
negative faults with substantially good accuracy and 
robustness. 
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List of symbols  
E EGR ratio 
I Engine moment of inertia (m4) 
m& Mass flow rate (kg/s) 
n Engine revolution (rpm) 
P Pressure (kPa) 
Q Heating value (kJ) 
R Universal gas constant (mole/kg.K) 
T Temperature (K) 
X Fuel split parameter 
v Volume (m3) 
Greek letters  
α Throttle angle (deg) 
η Efficiency 
κ Gas atomicity coefficient 
τ Time constant coefficient (sec) 

Subscripts  
a Ambient 
at past over the throttle plate 
d Displacement 
f Fuel 
fc Fuel conversion 
ff Fuel film 
i Intake manifold 
m Mean 
t Total 
v Volumetric 
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